
PROJECTIVE GEOMETRY: THE GEOMETRY BEHIND

ALGEBRAIC EQUATIONS

Welcome to the Clubles de Ciencias en México! This club aims at exploring and
unveiling the geometry behind polynomial equations. For example, 16th-century
painters in Europe were concerned with projecting faithfully a 3D object onto a 2D
plane. The mathematical model needed in order to carry this out came about 200
years later, and it is the so-called now Projective Geometry which is modeled using
algebraic equations.

By combining modern mathematical tools, and the computer software Macaulay2,
we plan to examine mathematical objects in dimension two, three, and if time per-
mits, four.

This club will strongly encourage student participation and will be based upon
mathematical collaboration and exploration.
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1. First Day

What is it that this subject accomplishes?
Why do we examine these mathematical objects?

Activity (50min) Projecting a circle, and other curves, in R3 into a piece of paper. Drawing
using rule and compass. How do you describe mathematically curves in
R3?
Goal: think about the properties of the projected objects (can one trans-
form one into another?).

Lecture (40min) Solving algebraic equations: complex numbers. Ring of polynomials and
ideals. First case, linear equations: matrices and determinants.

Exploration (60min) Projecting a line and a conic in R3 into the xy-plane (∼= R2). Use these
ideas in order to project to the xyz-plane the line defined by the following
equations.

a1x+ b1y + c1z + d1w = 0,

a2x+ b2y + c2z + d2w = 0,

a3x+ b3y + c3z + d3w = 0.

(1)

Introduction to Macaulay2.

Discussion (30min) What is the geometric situation needed in order to project from a point
and object in Rn into Rn−1? how do we guarantee that such a situation
holds?

Conclusions (40min) : Lines project to lines. The situations needed is the uniqueness of the
solution for a system of linear of n equations in n variables.

How do we think about projecting curves in Rn into Rn−1?

Film: David Eisenbud: Fundamental Theorem of Algebra (Numberphile)

Tomorrow : using matrices project a smooth conic to the form x2 + y2 = 1.

Lecture notes. The ring of polynomials with complex coefficients are denoted by
C[x0, . . . , xn] = R. It is a called a ring because we can add and multiply elements.
In it, we have ideals I ⊂ R. An ideal I is closed under addition, and g ∈ I, f ∈ R
implies f · g ∈ I.

Definition 1.1. An ideal I ⊂ R will be called prime, if fg ∈ I implies that either
f ∈ I or g ∈ I.

2



2. Second Day

Activity (50min) Describe three things we did yesterday. Proof the Fundamental Theorem
of Algebra.

Lecture (40min) Projective plane. Projective transformations (lines map to lines and conics
to conics) and composition (matrix multiplication). Conics and symmetric
matrices. Smoothness of a conic.

Exploration (60min) Let C = {x2 + y2 + xy + x + y = c}. Eliminate xy. Then, proceed to
eliminate x, y. What happens to the matrix associated to C? Can we
obtain a diagonal matrix always? What does this say about the projective
properties of conics? What happens to the derivatives?

Discussion (30min) All the conics are the same projectively. What does this mean (analyze the
geometry)? What happens to the associated symmetric matrix?

Conclusions (40min) :

How do we think about distinct conics in the plane?

Film: David Eisenbud talks about equations of degree 3.

Tomorrow Hilbert polynomial and the genus of an algebraic curve.

Lecture notes. Let us define the projective space. Let V = Cn+1 be the vector space
of dimension n + 1. Consider the set of all subspaces of dimension 1 in V . Such
a set is denoted by Pn, and is called projective space. It has global homogeneous
coordinates,

P2 = {[x : y : z]|[x : y : z] = [ax : ay : az]},
for a nonzero scalar a ∈ C.

Let φ be a ring homomorphisms φ : R → R. Then φ(fg) = φ(f)φ(g), and
φ(f + g) = φ(f) + φ(g). Linear are homomorphisms.
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3. Third Day

Lecture (40min) Graded modules and Hilbert polynomial. Arithmetic genus of a curve.

Exploration (60min) Macaulay2: List the arithmetic genus possible for plane algebraic curves.
Can we define a plane algebraic curve using two equations on P2?

Lecture (30min) Graded modules and Hilbert polynomial. Arithmetic genus of a curve.
Transversality and irreducibility of an algebraic set.

Discussion (60min) Find the Hilbert polynomial for a curve in space. Explain what’s goes on
at the level of ideals an modules. Dimension of an algebraic variety. Guess
a formula for the genus of a plane curve.

Conclusions (40min) :

How do we think about the genus of a curve?

Film: Joe Harris talks about the arithmetic genus.

Tomorrow Curves in space and their invariants.

Lecture notes. The ring of polynomial R = C[x, y, z] =
⊕
Rk has a natural grading

in terms of the degree. Let I ⊂ C[x, y, z] be an ideal. Then

M = C[x, y, z]/I =
⊕

Mk

is a graded C[x, y, z]-module. The Hilbert polynomial is defined by

HP (n) = dimMn

For example, the ideal

I = (x2 + y2 + z2) ⊂ C[x, y, z]

has the Hilbert polynomial: HPI(n) = 2n+ 1.

Definition 3.1. Let X ⊂ Pn be a projective variety. The dimension of X is
defined as the degree of the Hilbert polynomial HPI(n), where I ⊂ C[x0, . . . , xn]
stands for the ideal of X.

Definition 3.2. A projective algebraic variety of dimension 1 will be called curve.
Similarly, a projective algebraic variety of dimension 2 is called a surface.

Definition 3.3. Let X ⊂ Pn be a projective curve. The arithmetic genus X is
defined to be the number 1−HPI(0), where I ⊂ C[x0, . . . , xn] stands for the ideal
of X.

Definition 3.4. The variety X ⊂ P3 is irreducible, if its ideal IX ⊂ C[x, y, z, w] is
prime.

Example: Consider the variety in P3 defined by the ideal X = (xz−w2, xz− yw).
This variety consists of a conic and two lines.
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4. Fourth Day

Explorations (40min) Macaulay2: Projecting curves from Pn to P3 and P2. Smoothness.

Lecture (40min) Linear projections. Secants and multi-secants. Smoothness of a curve.
Singular double points on plane curves.

Exploration (30min) Project a smooth curve in P3 of degree d and genus g to P2. can you guess
what is the relation among g, d and δ =(double points)?

Discussion (40min) Curve of genus two in P3: Project it to P2 and get a plane quintic. Is this a
contradiction to the formulas above? Origin and geometry of singularities
on the projected curves. Is there a maximal number of nodes that a plane
curve can have?

Conclusions (40min) :

How do we think about the singularities of plane curves?

Film: Joe Harris talks about curves in P3.

Tomorrow Implications of what we’ve done thus far.

Lecture notes. All the functions in A2 whose 1st-derivative (and not higher order)
vanishes at (0, 0) have generators [Hulek, pag. 202],

m2
P2,p/m

3
P2,p = (x2, xy, y2).

A function f in this ring vanishes at zero, and so do its derivatives.

Let C = {f = 0} be a plane curve. We say C is smooth at p ∈ C if ∂f
∂xi

(p) 6= 0
for some i.

Definition 4.1. Let p ∈ C ⊂ P2 be a point on a plane curve C. The the local ring
of C at p is defined to be mC,p := {g ∈ C[C] | g(p) = 0}.

Definition 4.2. The curve C = {f = 0} is said to have a node at the point p ∈ C
if f ∈ m2

p/m
3
p, and if

f ∈ m2
p/m

3
p

has two distinct components.

Example: Let C = {y2 = x3 + x2} ⊂ A2 be an affine plane curve. Since ∂xC =
3x2 + 2x, and ∂yC = 2y, then f ∈ m2

C,(0,0). Furthermore, f ∈ m2
p/m

3
p is equal to

y2 − x2 = (y− x)(x+ y), which consists of two distinct lines. Hence, C has a node
at (0, 0).
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